Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.
نویسندگان
چکیده
OBJECTIVE The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. DESIGN AND RESULTS Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. CONCLUSIONS Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites.
منابع مشابه
The Health Advantage of a Vegan Diet: Exploring the Gut Microbiota Connection
This review examines whether there is evidence that a strict vegan diet confers health advantages beyond that of a vegetarian diet or overall healthy eating. Few studies include vegan subjects as a distinct experimental group, yet when vegan diets are directly compared to vegetarian and omnivorous diets, a pattern of protective health benefits emerges. The relatively recent inclusion of vegan d...
متن کاملDoes our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics.
Millions of microbes are found in the human gut, and are collectively referred as the gut microbiota. Recent studies have estimated that the microbiota genome contains 100-fold more genes than the host genome. These microbiota contribute to digestion by processing energy substrates unutilized by the host, with about half of the total genome of the gut microbiota being related to central carbon ...
متن کاملTalking microbes: When gut bacteria interact with diet and host organs
Obesity and diabetes have reached epidemic proportions. Evidence suggests that besides dietary habits and physical activity, other environmental factors, such as gut microbes, are recognized as additional partners implicated in the control of energy homeostasis. Studies on the human gut microbiota have shown that the general population can be stratified on the sole basis of three dominant bacte...
متن کاملGut Microbe-Generated Trimethylamine N-Oxide From Dietary Choline Is Prothrombotic in Subjects.
April 25, 2017 1671 CORRPONDENCE We previously showed gut microbial production of trimethylamine N-oxide (TMAO) from dietary nutrients like choline, lecithin, and L-carnitine is linked to the development of cardiovascular diseases.1–3 We also recently reported that plasma TMAO levels are associated with incident thrombotic event risk in subjects, and that TMAO both enhances platelet responsiven...
متن کاملFarnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism
The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gut
دوره 65 1 شماره
صفحات -
تاریخ انتشار 2016